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ABSTRACT 
 
Unmanned Aerial Vehicles are frequently used for 

the exploration of a hostile environment. UAVs can be 
lost or significantly damaged during the exploration 
process. Although employing multiple UAVs can increase 
the chance of success, their efficiency depends on the 
collaboration strategies used. We present a cooperative 
exploration strategy for UAVs controlled by autonomous 
agents. The agents are sharing information, coordinate 
their short-term goals and path choices, while each agent 
uses state of the art algorithms for its individual path 
planning and obstacle avoidance. The overall goals are to 
minimize the exploration time, avoid damage by sharing 
information about threats, and be robust to the failures of 
individual UAVs. Extensive simulation results prove the 
validity of the approach and provide ways to determine 
the optimal number of UAVs for different exploration 
tasks. 

 
 

1 INTRODUCTION 
 
Unmanned Aerial Vehicles are considered the cutting 

edge of modern flight and aviation technology. Future 
unmanned combat robot systems will most likely 
incorporate autonomy and collaboration to further 
improve the machine-human interface (B. Koetting, 2003; 
C.M. Shoemaker and J.A. Bornstein, 1998).  

 
In this paper we introduce and evaluate a 

collaborative exploration strategy for UAVs in hostile 
environments. This strategy is intended to be used for 
rapid exploration of large areas in e.g. war zones, 
contaminated zones or in areas where landmarks are to be 
avoided. Each agent utilizes a path-finder based on the 
work by Stentz (A. Stentz, 2003), tailored for probability 
based Occupancy Grid Maps (OGMs) (W. Burgard, M. 
Moors and F. Schneider, 2002), and Context Based 
Reasoning (CxBR) (F.G. Gonzalez, G. Patric and A.J. 
Gonzalez, 2000) to safely navigate through known zones. 
The choice of OGMs as internal map representation is 
based on its uncertainty management, merging- and 
search effectiveness. OGM consists of nodes with 
probabilities describing three classes. These classes are 
known, unknown and occupied. In addition to this the 
algorithm uses a frontier based collaboration scheme (B. 

Yamauchi, 1998) to delegate and distribute new 
waypoints within the agents. 

 
 

2 PROBLEM STATEMENT 
 
We consider a set of autonomous UAVs, controlled 

by intelligent agents, which are exploring a hostile 
environment in a collaborative manner. Their task 
consists of searching for safe paths, sharing information 
about known regions and finding unexplored regions 
within maps. The problem of collaboratively exploring 
hostile environments using autonomous UAV units can be 
divided into several sub problems: 

 
1. Agent behaviour and decision making 
2. Map representation 
3. Collaboration 

 
The agents controlling the UAVs are implemented 

using a common agent framework. The agent framework 
provides inter-agent communication, behavior modeling 
and team modeling capabilities for each individual agent. 
Another common component is the map used for storing 
agent sensory data acquired from the environment. The 
map needs to store information about known and 
unknown regions. Also, the organization of the map must 
allow efficient implementation of the path planning 
algorithms. An important component of our approach is 
the collaboration between agents during exploration. This 
collaboration includes mutual updating of the maps to 
allow for agents to know the total exploration progress 
and to determine when exploration is complete. The 
current destinations of the UAVs are distributed to avoid 
multiple explorations.  
 
 

3 AGENT FRAMEWORK 
 
The Context Based Reasoning framework, or CxBR, 

is primarily used to model tactical agent behavior. The 
CxBR paradigm is a simple and easily understood 
modeling technique that can be used to concisely 
represent knowledge and behavior for intelligent agents. 
The main concept is that contextual information influence 
the agent in its various decisions. Contextual information 
is represented as an extraction of key features from each 
situation in the environment where the most important 
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features are based on the background and experience of 
the specific agent (F.G. Gonzalez, G. Patric and A.J. 
Gonzalez, 2000). 

CxBR is based on the ideas that any recognized 
situation inherently defines a finite set of actions which 
address the current situation and that the current situation 
then can be used to simplify the identification of future 
situations by focusing on those that are likely to happen 
(A. J. Gonzalez and R.H. Ahlers, 1998). The CxBR 
paradigm of knowledge and tactical behavior 
representation is split between the following major 
components: 

• Agent 
• Mission context 
• Major contexts 
• Sub contexts 
• Inference engine 

The agent component is used as a base for a CxBR 
agent and it contains valuable information and 
capabilities, e.g. localization and velocity, about each 
individual agent in a system. The mission context 
component is used to describe the agent's overall 
objective and detect when it has been reached. Hence, 
each agent is assigned with a mission.  A mission context 
is built upon a set of major contexts and their sub 
contexts. A major context contains transition rules and 
sub-contexts that may be activated during the agent's life 
cycle. The last component, the inference engine, is a 
general purpose component that shall be used when 
applying rule-based knowledge to agents. By using the 
inference engine and the fact base, new knowledge may 
be derived using either forward-chaining or backward-
chaining. Figure 1 illustrates the relationships within 
CxBR and its components.  

 
Figure 1. The CxBR framework and its components. Each 
agent is assigned a mission. Each mission has number of 
major and sub contexts from where only one can be active 
at any time. The inference engine provides rule based 
knowledge to each agent. 

4 OCCUPANCY GRID MAPS 
 
The main data structure for any exploration algorithm 

is the map. The map serves as a data store for unknown 
regions and known regions in the environment. In 
addition, for this study, the map must store information 
about possible threats and obstacles.  

 
We chose to use the Occupancy Grid Map data 

structure to represent our map information. OGM is a 
probability based grid map where each cell in the grid 
represents a probability value of occupancy. We modeled 
our occupancy grid maps so that probabilities of unknown 
cells have values of 0.5; known spaces are either higher or 
lower than 0.5 depending on whether the cell is occupied 
or not occupied respectively. We define occupied cells to 
be threats and obstacles.  

4.1 Merging 

Merging multiple OGMs can easily be performed by 
applying the following equations to n maps (W. Burgard, 
M. Moors, D. Fox, R. Simmons and S. Thrun, 2000): 
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4.2 Convolving 

Avoiding obstacles in path-finder problems for 
known environments is necessary so that an agent can 
have a certain space for error and mistake. E.g. for robots 
in indoor environments one would want to calculate a 
path that will be able to carry the robot through narrow 
spaces without being trapped. The following equations 
(Burgard, 2000) can be used as a fast and reliable solution 
to the problem for occupancy grid maps. 
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These equations should be applied, in the case of a 

two dimensional map, to both rows and columns. The first 
equation should be used for the general case where the 
cells in the map are located inside the map borders. The 
second equation should be used when the cells reside 
within the very first row or column and the third equation 
should be used when the cells reside on the very last row 
or column of the map.  

 
 

5 PATH FINDING 
 
Path-finding is the process of generating or planning 

a path for a movable robot or any type of moveable agent 
in an environment. Although the path-finding problem is 
one of the most studied ones in classic artificial 
intelligence, it remains one of the most difficult ones. In 
general, uninformed search algorithms can solve only the 
most trivial toy problems. The algorithms used in practice 
are a combination of search and heuristics. The algorithm 
used by our system is a version of the heuristic A* 
adapted from (A. Stentz, 2003). 

 
As mentioned before, occupancy grid maps provide 

good management of uncertainty. Occupancy grid maps 
can also be merged and integrated with other occupancy 
maps using equation described in section 4.1. Also, we 
have seen that occupancy maps can be convolved, by 
applying equations described in section 4.2, so that 
obstacles and threats in the environment are avoided for 
safe planned paths.  

 
To apply A* we need to determine the metric g used 

to measure the cost of a path. In an occupancy grid map 
the g values are represented by the sum of probabilities in 
the map along the chosen path. This situation is presented 
in Figure 2, where we can see the initial start and goal 
points as well as obstacles/threats and movable spaces. 
The next step in the application of a A* style-search is to 
choose an admissible heuristic function h. The heuristic 
function is normally the cost function for the simplified 
problem. This function will always underestimate the true 
cost of the optimal path. In our case, we choose the 
distance function assuming there are no obstacles in the 
map, which is essentially the Manhattan distance 
function.  
 

 
Figure 2. Initial path finding problem. The black squares 
represent start point (upper right) and goal point (lower 
left). The black dots depict obstacles or threats and the 
light-gray dots represent know and movable terrain within 
the OGM. 
 

Applying the A* influenced path-finding algorithm to 
the start and goal points in Figure 2 results in a collision 
free path depicted by Figure 3.  

 

 
Figure 3. Collision free path. The black squares show the 
generated path and gray squares shows additional nodes 
explored by the search algorithm.  
 

As Figure 3 depicts, there is no collision in the 
generated path. However, having an agent's path planned 
that close to an obstacle/threat may incur unnecessary risk 
of collision due to real-world constraints, erroneous 
positioning or sensory noise. To solve this problem a 
convolving factor is introduced. The convolving factor 
simply depicts how many convolutions that should be 
performed, by applying the equations in section 4.2, on 
the occupancy probabilities. As we can see in Figure 4, 
convolving the map produced a much safer path by the 
path finding algorithm. Figure 4 was produced with a 
convolve factor of 3. 
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Figure 4. Safe and collision free path using convolving 
factor set to 3. The path is generated with a distance to the 
threat. 

 
 

6 EXPLORATION STRATEGY 
 
Each agent has its own OGM map which is updated 

as more information becomes available. The agents 
communicate to update their maps with information 
collected by other UAVs, and to efficiently allocate the 
exploration subtasks. The goal of the agents is to explore 
unknown terrain while avoiding threats. The unknown 
terrain to be explored is chosen from the set of frontier 
points, defined as a point that separates unknown terrain 
from known terrain. A high level overview of the strategy 
deployed by each agent is as follows: 

 
1) Let F be a list of available frontier points 

a. If F is empty then exploration is completed 
2) Let AF be a list of allocated frontier points 

a. For each P in AF 
i. Remove P from F 

ii. Filter vicinity frontiers of P from F 
b. Select a frontier point A from F 
c. Inform team members that A now is 

allocated 
d. Plan path using A 

3) Navigate through generated path 
a. When A is reached start over at 1) 

 
It is up to each individual agent to filter and choose 

waypoints from 2aii) and 2b) respectively. If filtered 
vicinity points in 2aii) are not chosen with care the 
algorithm will most likely suffer from frontier starvation. 
This is a state where the no frontier points are available 
due to overcrowding. 

6.1 Frontier starvation 

Frontier starvation occurs in the algorithm when there 
are too many agents trying to search the environment at 
the same time. The system gets over-crowded because 
there is a limited amount of frontier points available at 
any instant of time. Since the number of frontiers 
available for the agents is dynamically changing, agents 

may not be able to find a free frontier point. Frontier 
starvation generally occurs when agents are launched too 
close to each other in time. The impact of frontier 
starvation on the algorithm is that the overall mapping 
efficiency is reduced. The number of agents useable to 
search an environment is mainly limited by the frontier 
starvation problem. 

6.2 Frontier selection 

In order to achieve the most efficient exploration, the 
frontier point selection of the agents needs to be 
coordinated. For example, it is inefficient for two UAVs 
to explore the same region (or even regions very close to 
each other). The frontier selection can be seen as a 
resource allocation problem, and there are several 
algorithms which can be applied.  

 
Due to the real-time nature of the problem, one-show 

heuristic approaches are preferable to complex 
optimization algorithms. In the following we investigate 
two algorithms (a) greedy selection and (b) lowest cost 
selection. 

 
Greedy selection of frontier points always chooses 

the closest frontier point to the current location of the 
UAV in terms of physical distance. This approach is easy 
to implement and very fast (its computational complexity 
is O(n), where n is the number of available frontier 
points). The drawback of this algorithm is that the 
physical distance might not be the best predictor of the 
cost to reach the frontier point. Relatively close points 
may be expensive to reach, if they are separated by 
obstacles from the current location.  

 
The lowest cost selection algorithm is similar to the 

greedy algorithm, but instead of the physical distance it is 
using the actual cost of the path to the given frontier 
point. This approach avoids the drawbacks of the greedy 
algorithm. The complexity of this algorithm is 
O(n)*O(pathfinder), where O(pathfinder) is the 
complexity of the path finder algorithm, in our case, A*. 
As the complexity of A* is exponential at worst case and 
relatively large even for average case, the lowest cost 
selection can be a significant problem.  

 
In the case where there simply are too many frontier 

points to find costs for, one can select a set of frontier 
points that are closest to the current agent location and 
find the costs for these. By limiting the cost value 
generation to these frontier points only one can increase 
the performance significantly. However, this hybrid 
approach cannot guarantee that the best path is always 
chosen. 
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6.3 Frontier allocation 

Once an agent have selected a frontier point to visit it 
is important to allocate this frontier point and its vicinity 
points as the agent's resource. This is done to decrease the 
amount of overlapping environmental mappings 
performed by the agents. This implicitly forces agents to 
collaborate. In this section we will discuss one type of 
resource allocation which may be performed on multiple 
agent environmental mapping application domains. 
 

The sensor based approach, introduced here, relies on 
the functionality, or maximum coverage, of the sensor. If 
such value is available it can assist in the estimation of 
expected visibility by allocating the frontier points in its 
range. It is this value that decides the behaviour of the 
team. We might choose to use a value higher or lower 
than the estimate, thus controlling the deployment of the 
UAVs. A value higher than the estimate will force the 
agents in the team to explore the area in a more scattered 
way.  

 
The main advantage of using this allocation 

algorithm is that it requires very little communication 
between the UAVs. Basically a team of homogeneous 
agents, with equal sensor range, only need to provide each 
other with its current frontier point selection, as the agents 
can estimate each others resource allocation. Hence, each 
agent in the system will have a list of already allocated 
frontier points. The filtering of available frontier points in 
the local map can then be performed onboard each agent 
in the system based on the already known sensor visibility 
range and the list of allocated frontier points. 
 

 
7 SIMULATION RESULTS 

 
We have simulated the algorithms presented in this 

paper in the context of a realistic mission scenario. In this 
scenario a set of scout UAVs depart from the UAV base. 
The mission is to find enemy landmarks, such as 
buildings or SAM sites, as fast as possible. The main 
difficulty in this scenario is that the agents must cooperate 
and coordinate their actions for a more efficient 
exploration. In this type of scenario each agent must 
maintain its own path-finding algorithm so that planning 
of navigation is performed in a secure and reliable way. 
The agent can distribute the locations of hostile units 
among each other so that danger points can be avoided 
when planning for routes. This scenario ends once the 
agents have covered the whole map and when all the 
landmarks have been identified. 

 
We have simulated the algorithm on a in-house 

developed framework influenced by (G.E. Smid K.C. 
Cheok, G. Gerhart and G Hudas, 2002). We used a 
realistic generated terrain, with 5 SAM sites distributed in 

the environment. A snapshot of the simulation 
environment, presenting the terrain, the location of the 
UAVs and SAMs and the currently active communication 
links is presented in Figure 6. 

 

 
Figure 5. A birds-eye view of the environment. The lines 
indicate active agent communication. 

 
Extensive experiments were performed in which 

teams of 1, 2, 4, 6 and 8 UAVs explored the environment 
under the control of the agents. The diagram in Figure 7 
presents the results from 100 simulated runs for every 
configuration. We observe that the exploration time is 
initially decreasing with the number of UAVs deployed, 
but after reaching an optimum (in our case, 6 UAVs) the 
time required to finish the exploration is actually 
increasing, due to phenomena such as frontier starvation 
and additional communication needs.  

 

 
Figure 6. The relationship between the exploration time 
and number of UAVs. The diagram shows the mean, 
minimum, maximum and the 95% confidence interval. 
 
 

8 CONCLUSIONS 
 
UAV units and a brief description of their many 

modern day implementations have been introduced in this 
paper. One of the most interesting tasks for UAV 
implementations is autonomous mapping of environments 
in team collaboration and coordination domains. To 
efficiently search for landmarks or simply map an 
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environment in a system consisting of multiple UAV units 
it is beneficial to use flexible agent frameworks that can 
handle contextual information and react to this 
information accordingly. The CxBR paradigm was 
proposed, implemented and utilized as a base agent 
framework for UAV agents mainly because of its 
simplicity and expressive design features. 
 

The environmental exploration problem was 
proposed to consist of the choice of internal agent map 
representation, path finding, obstacle avoidance, 
information merging and expected visibility for resource 
allocation. A probabilistic approach that makes use of 
occupancy grid map representations was presented to 
solve the problem of map representation choice as well as 
information merging. A path finder, tailored for 
occupancy grid maps, was developed not only to solve the 
problem of planning a collision free path but also to find a 
safe path by using convolving factors. A simple expected 
visibility solution, based on sensor capability, was 
proposed to determine each agent's allocated resources. 
An algorithm that incorporates all of the exploration 
problems was proposed and implemented. The algorithm 
was tested in a simulation environment and the results 
were statistically evaluated. The algorithm used in a 
multi-agent system, with 4 agents, produced over a 300% 
speed-up improvement compared to a single agent 
system. 
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